>>所属分类 >> 计算机和外设   

生物计算机

生物计算机又称仿生计算机,是以生物芯片取代在半导体硅片上集成效以万计的晶体管制成的计算机。它的主要原材料是生物工程技术产生的蛋白质分子,并以此作为生物芯片。生物计算机芯片本身还具有并行处理的功能,其运算速度要比当今最新一代的计算机快10万倍,能量消耗仅相当于普通计算机的十亿分之一,存储信息的空间仅占百亿亿分之一。

目录

[显示全部]

简介编辑本段回目录

 

生物计算机生物计算机


  生物计算机( biological computer)又称仿生计算机(bionic computer)。以生物芯片取代在半导体硅片上集成效以万计的晶体管制成的计算机。涉及计算机科学、脑科学、神经生物学、分子生物学、生物物理、生物工程、电子工程、物理学和化学等有关学科。1986年日本开始研究生物芯片,研究有关大脑和神经元网络结构的信息处理、加工原理,以及建立全新的生物计算机原理,探讨适于制作芯片的生物大分子的结构和功能,以及如何通过生物工程(用脱氧核糖核酸A重组技术和蛋白质工程)来组装这些生物分子功能元件。

仿生应用 编辑本段回目录


  人类有一门学科叫仿生学,即通过对自然界生物特性的研究与模仿,来达到为人类社会更好地服务的目的。典型的例子如,通过研究蜻蜓的飞行制造出了直升机;对青蛙眼睛的表面“视而不见”,实际“明察秋毫”的认识,研制出了电子蛙眼;对苍蝇飞行的研究,仿制出一种新型导航仪——振动陀螺仪,它能使飞机和火箭自动停止危险的“跟头”飞行,当飞机强烈倾斜时,能自动得以平衡,使飞机在最复杂的急转弯时也万无一失;对蝙蝠没有视力,靠发出超声波来定向飞行的特性研究,制造出了雷达、超声波定向仪等;对“变色龙”的研究,产生了隐身科学和保护色的应用……

   仿生学同样可应用到计算机领域中。

   科学家通过对生物组织体研究,发现组织体是由无数的细胞组成,细胞由水、盐、蛋白质和核酸等有机物组成,而有些有机物中的蛋白质分子像开关一样,具有“开”与“关”的功能。因此,人类可以利用遗传工程技术,仿制出这种蛋白质分子,用来作为元件制成计算机。科学家把这种计算机叫做生物计算机。

   生物计算机主要是以生物电子元件构建的计算机。它利用蛋白质有开关特性,用蛋白质分子作元件从而制成的生物芯片。其性能是由元件与元件之间电流启闭的开关速度来决定的。用蛋白质制成的计算机芯片,它的一个存储点只有一个分子大小,所以它的存储容量可以达到普通计算机的十亿倍。由蛋白质构成的集成电路,其大小只相当于硅片集成电路的十万分之一。而且运行速度更快,只有1×10^(-11)秒,大大超过人脑的思维速度。

优点编辑本段回目录


  生物计算机有很多优点,主要表现在以下几个方面:

   首先,它体积小,功效高。在一平方毫米的面积上,可容纳几亿个电路,比目前的集成电路小得多,用它制成的计算机,已经不像现在计算机的形状了,可以隐藏在桌角、墙壁或地板等地方。
       其次,当我们在运动中,不小心碰伤了身体,有的上点儿药,有的年轻人甚至药都不上,过几天,伤口就愈合了。这是因为人体具有自我修复功能。同样,生物计算机也有这种功能,当它的内部芯片出现故障时,不需要人工修理,能自我修复,所以,生物计算机具有永久性和很高的可靠性。

   再者,生物计算机的元件是由有机分子组成的生物化学元件,它们是利用化学反应工作的,所以,只需要很少的能量就可以工作了,因此,不会像电子计算机那样,工作一段时间后,机体会发热,而它的电路间也没有信号干扰。

   1983年,美国公布了研制生物计算机的设想之后,立即激起了发达国家的研制热潮。当前,美国、日本、德国和俄罗斯的科学家正在积极开展生物芯片的开发研究。从1984年开始,日本每年用于研制生物计算机的科研投资为86亿日元。

   目前,生物芯片仍处于研制阶段,但在生物元件,特别是在生物传感器的研制方面已取得不少实际成果。这将会促使计算机、电子工程和生物工程这三个学科的专家通力合作,加快研究开发生物芯片。

   生物计算机一旦研制成功,可能会在计算机领域内引起一场划时代的革命。

   生物计算机是以生物界处理问题的方式为模型的计算机。目前主要有:生物分子或超分子芯片、自动机模型、仿生算法、生物化学反应算法等几种类型。

   计算机工业在近几十年内飞速发展,其速度令人瞠目。然而目前晶体管的密度已近当前所用技术的理论极限,晶体管计算机能否继续发展下去?所以,人们在不断寻找新的计算机结构。另一方面,人们在研究人工智能的同时,借鉴生物界的各种处理问题的方式,即所谓生物算法,提出了一些生物计算机的模型,部分模型已经解决了一些经典计算机难以解决的问题。

种类 编辑本段回目录


生物分子或超分子芯片
  立足于传统计算机模式,从寻找高效、体微的电子信息载体及信息传递体入手,目前已对生物体内的小分子、大分子、超分子生物芯片的结构与功能做了大量的研究与开发。“生物化学电路” 即属于此。
自动机模型
  以自动理论为基础,致力与寻找新的计算机模式,特别是特殊用途的非数值计算机模式。目前研究的热点集中在基本生物现象的类比,如神经网络、免疫网络、细胞自动机等。不同自动机的区别主要是网络内部连接的差异,其基本特征是集体计算,又称集体主义,在非数值计算、模拟、识别方面有极大的潜力。
仿生算法
  以生物智能为基础,用仿生的观念致力于寻找新的算法模式,虽然类似于自动机思想,但立足点在算法上,不追求硬件上的变化。
生物化学反应算法
  立足于可控的生物化学反应或反应系统,利用小容积内同类分子高拷贝数的优势,追求运算的高度并行化,从而提供运算的效率。DNA计算机属于此类。
细胞计算机
  采用系统遗传学(system genetics)原理、合成生物技术,人工设计与合成基因、基因链、信号传导网络等,对细胞进行系统生物工程(system bio-engineering)改造与重编程序,可以做复杂的计算与信息处理,细胞计算机又称为湿计算机(wet computer),目前的计算机是干计算机(dry computer)。

   1994年中科院曾邦哲发表系统生物工程的基因组蓝图设计与生物机器装配、生物分子电脑与细胞仿生工程等仿生学与基因工程的整合概念。中科院曾邦哲(曾杰)1999年提出把遗传信息系统看作基因组智能(genomic intelligence)人工编制基因程序,重新设计细胞内复杂生物分子相互作用网络,使细胞成为人工生命系统(artificial biosystem),并在线公布了人工设计细胞内分子电路系统的概念图,以之区别于“artificial life”,从而提出计算机仿生学、基因工程的细胞分子机器的设计与装配研究,2002年在德国提出分子模块、细胞器、基因群设计细胞并设计细胞信号通讯的生物计算机模型,从而拓展了多元细胞计算机与层次的概念。生物计算机研究与开发成为现代合成生物学的重要内容。

研究方向 编辑本段回目录


  生物计算机是人类期望在21世纪完成的伟大工程。是计算机世界中最年轻的分支。目前的研究方向大致是两个:一是研制分子计算机,即制造有机分子元件去代替目前的半导体逻辑元件和存储元件;另一方面是深入研究人脑的结构、思维规律,再构想生物计算机的结构。

新型生物计算机 编辑本段回目录

  据美国国家地理杂志报道,最新研制的新型生物计算机可让科学家对分子进行“编程”,并由活细胞执行“命令”。

   美国加州理工学院(California Institute of Technology)的克里斯蒂娜·斯默尔克(Christina Smolke)是该研究的合著作者之一,他指出,像这样的生物计算机有朝一日可使人类直接控制生物学计算系统。该研究将发表在2008年10月17日出版的《科学》杂志上。生物计算机最终将具有智能,从细胞中生成生物燃料,比如:可以实现在某种特殊状况下有效控制“智能药物”。斯默尔克说,“如果探测到某种疾病,一种智能药物能够从一个细胞环境中采样,并形成自防御序列结构。”

  

分子在酵母细胞中“运行”分子在酵母细胞中“运行”

 这种新型生物计算机包括着装配在酵母细胞中的工程RNA片断,RNA是类似于DNA的一种生物分子,它可以编码遗传基因信息,比如:如何制造多样化的蛋白质。从计算工程角度来讲,生物计算机的“输入”是分子漂浮在细胞内;“输出”是蛋白质产物的变化。举个例子,RNA计算机很可能捆绑着两种不同的分子,如果两种不同分子附着在一起,将导致出现生物计算机的外形变化。改变形状后的生物计算机对DNA进行捆绑时,将直接影响基因表达,并减缓蛋白质制造。

   这些蛋白质将以不同方式影响细胞,比如:如果这些细胞是癌细胞,蛋白质将会把癌细胞杀死。研究小组设计RNA计算机的不同部分可进行模件组成,因此这些组件可混合匹配组装。

   斯默尔克说,“依据我们不同的组合方式,将实现不同的效应。”自然界倾向于形成复杂的分子结构,而这些复杂的分子却能够实现非凡的独立性功能。建立一些可互换性组件执行多样化计算功能存在着困难,但是这种生物计算机却具有较高的效率,在日后的研究中将逐渐成熟。

   许多科学家认为生物计算机不太可能超越或者匹配现今的电子计算机。美国普林斯顿大学电子工程师兼分子生物学家罗恩·韦斯(Ron Weiss)说,“它们并不能像我们日常的计算机快速运行微软Windows系统,或者运行Wii游戏。”与众不同的是,生物计算机能够潜在地修补或直接影响细胞进程。

   韦斯称,它基本上采用一种“细胞语言”,这项最新研究将拓展生物计算机的应用领域。之前的RNA计算机并不是很复杂。

   以色列魏兹曼学院(Weizmann Institute of Science)的计算机科学家兼生物计算机学家埃胡德·沙皮罗(Ehud Shapiro)并未参与斯默尔克的研究,在此之前,他带领的研究小组成功地使用DNA建立了一个生物计算机,可工作在试管之中,并执行一些简单的数学运算。

   但是沙皮罗的生物计算机不同于目前最新的RNA计算机,他的试管分子计算机很容易受到外界环境的影响和干扰。沙皮罗说,“斯默尔克的最新研究显示新型生物计算机可实现分子在细胞内的运行。”他期望未来RNA计算机能够代替由蛋白质制造的复杂装置,蛋白质是目前我们所知的自然界最有效的装置,我们知道如何让RNA分子执行简单的任务,却不知道它们是如何驱动蛋白质的。这将是今后重要研究的一个目标。

关键DNA 编辑本段回目录


  正如人类基因组计划给予我们的启示一样,DNA(脱氧核糖核酸)的资料储存及运算能力可能远远超过目前电脑所使用的硅晶片。目前,电脑科学家正致力于研发基因超级电脑,用以建构以DNA为基础的资讯科技新世纪。DNA又称为脱氧核糖核酸,使细胞核中携带生物生长指令的遗传物质。DNA拥有不可思议的资料存储功能,很可能比硅晶片更强。一般而言,1毫克DNA的存储功能大约相当于1万片的光碟片,更为不可思议的是,DNA还具有在同一时间处理数兆个运算指令的能力。研究者指出,将生命活动的指令进行编码的遗传分子DNA和RNA里可以储存比常规存储芯片多的数据,试管状的生物计算机中含有大量的遗传物质片断,每一个片断就是一个微型计算工具,因此生物计算机能同时进行数千次甚至上百万次计算。对于生物计算机将来的用途,研究人员有种种设想。其中一项就是让它代替人进行新药物临床试验,它通过运算可以模拟人体的多种变化情况,只要把药品的成分描述输入生物计算机,就会得出反应结果。

附件列表


→如果您认为本词条还有待完善,请 编辑词条

下一篇细胞计算机

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

收藏到:  

词条信息

xutou
xutou
圣贤
词条创建者 发短消息   
  • 浏览次数: 1073 次
  • 编辑次数: 1次 历史版本
  • 更新时间: 2012-02-07

相关词条