>>所属分类 >>

IGBT

目录

[显示全部]

百科名片编辑本段回目录

IGBTIGBT
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

结构编辑本段回目录

IGBT结构图IGBT结构图
       左边所示为一个N沟道增强型绝缘栅双极晶体管结构, N+区称为源区,附于其上的电极称为源极。P+区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P型区(包括P+和P-区)(沟道在该区域形成),称为亚沟道区(Subchannel region)。而在漏区另一侧的P+区称为漏注入区(Drain injector),它是IGBT特有的功能区,与漏区和亚沟道区一起形成PNP双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。 
       
三菱制大功率IGBT模块三菱制大功率IGBT模块
IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP(原来为NPN)晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N-沟道MOSFET,所以具有高输入阻抗特性。当MOSFET的沟道形成后,从P+基极注入到N-层的空穴(少子),对N-层进行电导调制,减小N-层的电阻,使IGBT在高电压时,也具有低的通态电压。

工作特性编辑本段回目录

静态特性
        IGBT 的静态特性主要有伏安特性、转移特性和开关特性。
        IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。
         IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。
         IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示
        Uds(on) = Uj1 + Udr + IdRoh
        式中Uj1 —— JI 结的正向电压,其值为0.7 ~1V ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。
        通态电流Ids 可用下式表示:
        Ids=(1+Bpnp)Imos
        式中Imos ——流过MOSFET 的电流。
        由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V的IGBT 通态压降为2 ~ 3V 。IGBT 处于断态时,只有很小的泄漏电流存在。
动态特性
        IGBT 在开通过程中,大部分时间是作为MOSFET 来运行的,只是在漏源电压Uds 下降过程后期, PNP 晶体管由放大区至饱和,又增加了一段延迟时间。td(on) 为开通延迟时间, tri 为电流上升时间。实际应用中常给出的漏极电流开通时间ton 即为td (on) tri 之和。漏源电压的下降时间由tfe1 和tfe2 组成。
        IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。因为IGBT栅极- 发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。
        IGBT在关断过程中,漏极电流的波形变为两段。因为MOSFET关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间,td(off)为关断延迟时间,trv为电压Uds(f)的上升时间。实际应用中常常给出的漏极电流的下降时间Tf由图中的t(f1)和t(f2)两段组成,而漏极电流的关断时间
        t(off)=td(off)+trv十t(f)
        式中,td(off)与trv之和又称为存储时间。
        IGBT的开关速度低于MOSFET,但明显高于GTR。IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极和发射极并联电阻的增加而增加。IGBT的开启电压约3~4V,和MOSFET相当。IGBT导通时的饱和压降比MOSFET低而和GTR接近,饱和压降随栅极电压的增加而降低。
         正式商用的IGBT器件的电压和电流容量还很有限,远远不能满足电力电子应用技术发展的需求;高压领域的许多应用中,要求器件的电压等级达到10KV以上,目前只能通过IGBT高压串联等技术来实现高压应用。国外的一些厂家如瑞士ABB公司采用软穿通原则研制出了8KV的IGBT器件,德国的EUPEC生产的6500V/600A高压大功率IGBT器件已经获得实际应用,日本东芝也已涉足该领域。与此同时,各大半导体生产厂商不断开发IGBT的高耐压、大电流、高速、低饱和压降、高可靠性、低成本技术,主要采用1um以下制作工艺,研制开发取得一些新进展。

IGBT 原理编辑本段回目录

方法
         IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET 器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。
导通

        IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGB   T技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和 N+ 区之间创建了一个J1结。 当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率 MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流); 空穴电流(双极)。
关断

        当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。
        鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的。
阻断与闩锁
        当集电极被施加一个反向电压时, J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。 第二点清楚地说明了NPT器件的压降比等效(IC 和速度相同) PT 器件的压降高的原因。
当栅极和发射极短接并在集电极端子施加一个正电压时,P/N J3结受反向电压控制。此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。
        IGBT在集电极与发射极之间有一个寄生PNPN晶闸管,如图1所示。在特殊条件下,这种寄生器件会导通。这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。通常情况下,静态和动态闩锁有如下主要区别:
        当晶闸管全部导通时,静态闩锁出现。 只在关断时才会出现动态闩锁。这一特殊现象严重地限制了安全操作区 。 为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施: 防止NPN部分接通,分别改变布局和掺杂级别。 降低NPN和PNP晶体管的总电流增益。 此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。因此,器件制造商必须注意将集电极最大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。

研发进展编辑本段回目录

        IGBT(尽缘栅双极晶体管)作为新型电力半导体场控自关断器件,集功率MOSFET的高速性能与双极性器件的低电阻于一体,具有输进阻抗高,电压控制功耗低,控制电路简单,耐高压,承受电流大等特性,在各种电力变换中获得极广泛的应用。与此同时,各大半导体生产厂商不断开发IGBT的高耐压、大电流、高速、低饱和压降、高可靠、低本钱技术,主要采用1um以下制作工艺,研制开发取得一些新进展。[1]
1、低功率IGBT
        IGBT应用范围一般都在600V、1KA、1KHz以上区域,为满足家电行业的发展需求,摩托罗拉、ST半导体、三菱等公司推出低功率IGBT产品,实用于家电行业的微波炉、洗衣机、电磁灶、电子整流器、照相机等产品的应用。
2、U-IGBT
        U(沟槽结构)--TGBT是在管芯上刻槽,芯片元胞内部形成沟槽式栅极。采用沟道结构后,可进一步缩小元胞尺寸,减少沟道电阻,进步电流密度,制造相同额定电流而芯片尺寸最少的产品。现有多家公司生产各种U—IGBT产品,适用低电压驱动、表面贴装的要求。 
3、NPT-IGBT
        NPT(非传统型)--IGBT采用薄硅片技术,以离子注进发射区代替高复杂、高本钱的厚层高阻外延,可降低生产本钱25%左右,耐压越高本钱差越大,在性能上更具有特色,高速、低损耗、正温度系数,无锁定效应,在设计600—1200V的IGBT时,NPT—IGBT可靠性最高。西门子公司可提供600V、1200V、1700V系列产品和6500V高压IGBT,并推出低饱和压降DLC型NPT—IGBT,依克赛斯、哈里斯、英特西尔、东芝等公司也相继研制出NPT—IGBT及其模块系列,富士电机、摩托罗拉等在研制之中,NPT型正成为IGBT发展方向。
4、SDB--IGBT
        鉴于目前厂家对IGBT的开发非常重视,三星、快捷等公司采用SDB(硅片直接键合)技术,在IC生产线上制作第四代高速IGBT及模块系列产品,特点为高速,低饱和压降,低拖尾电流,正温度系数易于并联,在600V和1200V电压范围性能优良,分为UF、RUF两大系统。 
5、超快速IGBT
        国际整流器IR公司的研发重点在于减少IGBT的拖尾效应,使其能快速关断,研制的超快速IGBT可最大限度地减少拖尾效应,关断时间不超过2000ns,采用特殊高能照射分层技术,关断时间可在100ns以下,拖尾更短,重点产品专为电机控制而设计,现有6种型号,另可用在大功率电源变换器中。
6、IGBT/FRD
       IR公司在IGBT基础上推出两款结合FRD(快速恢复二极管)的新型器件,IGBT/FRD有效结合,将转换状态的损耗减少20%,采用TO—247外型封装,额定规格为1200V、25、50、75、100A,用于电机驱动和功率转换,以IGBT及FRD为基础的新技术便于器件并联,在多芯片模块中实现更均匀的温度,进步整体可靠性。
7、IGBT功率模块
        IGBT功率模块采用IC驱动,各种驱动保护电路,高性能IGBT芯片,新型封装技术,从复合功率模块PIM发展到智能功率模块IPM、电力电子积木PEBB、电力模块IPEM。PIM向高压大电流发展,其产品水平为1200—1800A/1800—3300V,IPM除用于变频调速外,600A/2000V的IPM已用于电力机车VVVF逆变器。平面低电感封装技术是大电流IGBT模块为有源器件的PEBB,用于舰艇上的导弹发射装置。IPEM采用共烧瓷片多芯片模块技术组装PEBB,大大降低电路接线电感,进步系统效率,现已开发成功第二代IPEM,其中所有的无源元件以埋层方式掩埋在衬底中。智能化、模块化成为IGBT发展热门。

对比编辑本段回目录

        输出特性与转移特性
        IGBT的伏安特性是指以栅极电压VGE为参变量时,集电极电流IC与集电极电压VCE之间的关系曲线。IGBT的伏安特性与BJT的输出特性相似,也可分为饱和区I、放大区II和击穿区III三部分。IGBT作为开关器件稳态时主要工作在饱和导通区。IGBT的转移特性是指集电极输出电流IC与栅极电压之间的关系曲线。它与MOSFET的转移特性相同,当栅极电压VGE小于开启电压VGE(th)时,IGBT处于关断状态。在IGBT导通后的大部分集电极电流范围内,IC与VGE呈线性关系。
        IGBT与MOSFET的对比:
        MOSFET全称功率场效应晶体管。它的三个极分别是源极(S)、漏极(D)和栅极(G)。
        主要优点:热稳定性好、安全工作区大。
         缺点:击穿电压低,工作电流小。
        IGBT全称绝缘栅双极晶体管,是MOSFET和GTR(功率晶管)相结合的产物。它的三个极分别是集电极(C)、发射极(E)和栅极(G)。
         特点:击穿电压可达1200V,集电极最大饱和电流已超过1500A。由IGBT作为逆变器件的变频器的容量达250kVA以上,工作频率可达20kHz。

检测编辑本段回目录

IGBT判断极性
        首先将万用表拨在R×1KΩ挡,用万用表测量时,若某一极与其它两极阻值为无穷大,调换表笔后该极与其它两极的阻值仍为无穷大,则判断此极为栅极(G )其余两极再用万用表测量,若测得阻值为无穷大,调换表笔后测量阻值较小。在测量阻值较小的一次中,则判断红表笔接的为集电极(C);黑表笔接的为发射极(E)。
IGBT判断好坏
 
        将万用表拨在R×10KΩ挡,用黑表笔接IGBT 的集电极(C),红表笔接IGBT 的发射极(E),此时万用表的指针在零位。用手指同时触及一下栅极(G)和集电极(C),这时IGBT 被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。然后再用手指同时触及一下栅极(G)和发射极(E),这时IGBT 被阻断,万用表的指针回零。此时即可判断IGBT 是好的。
IGBT检测注意事项
        任何指针式万用表皆可用于检测IGBT。注意判断IGBT 好坏时,一定要将万用 表拨在R×10KΩ挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT 导通,而无法判断IGBT 的好坏。此方法同样也可以用于检测功率场效应晶体管(P-MOSFET)的好坏。

模块简介编辑本段回目录

        IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。
        若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOS 截止,切断PNP晶体管基极电流的供给,使得晶体管截止。IGBT与MOSFET一样也是电压控制型器件,在它的栅极—发射极间施加十几V的直流电压,只有在uA级的漏电流流过,基本上不消耗功率。

附件列表


→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

收藏到:  

词条信息

cuicaifeng
cuicaifeng
圣贤
词条创建者 发短消息   
  • 浏览次数: 690 次
  • 编辑次数: 1次 历史版本
  • 更新时间: 2013-04-07

相关词条