>>所属分类 >> 医疗电子   

X射线

X射线是波长介于紫外线和γ射线 间的电磁辐射。X射线是一种波长很短的电磁辐射,其波长约为(20~0.06)×10-8厘米之间。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。波长小于0.1埃的称超硬X射线,在0.1~1埃范围内的称硬X射线,1~10埃范围内的称软X射线。
目录

[显示全部]

简介编辑本段回目录

X射线的特征是波长非常短,频率很高。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流。
X射线(英语:X-ray),又被称为艾克斯射线、伦琴射线或X光,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和 X射线结晶学。X射线也是游离辐射等这一类对人体有危害的射线。
1906年,实验证明X射线是波长很短的一种电磁波,因此能产生干涉、衍射现象。X射线用来帮助人们进行医学诊断和治疗;用于工业上的非破坏性材料的检查。
X射线是波长范围在0.01纳米到10纳米之间(对应频率范围30PHz到30EHz))的电磁波,具波粒二象性。电磁波的能量以光子(波包)的形式传递。当X射线光子与原子撞击,原子可以吸收其能量,原子中电子可跃迁至较高电子轨态,单一光子能量足够高(大于其电子之电离能)时可以电离此原子。一般来说,较大之原子有较大机会吸收X射线光子。人体软组织由较细之原子组成而骨头含较多钙离子,所以骨头较软组织吸引较多X射线。故此,X射线可以用作检查人体结构。

原理编辑本段回目录

当接通电源,按下启动按钮时,整机便开始工作。由主控器发出的脉冲信号,经功率放大,倍压产生高压给X射线管阳极,同样主控Ⅱ发出的脉冲信号经放大给X射线管灯丝,使X射线管产生X射线,并通过数显面板显示出相应的值KV/μA。此时被测物体放在X射线源与像增强器之间,像增强器的显示屏就显示出被透视物的清晰图像。为使仪器稳定可靠地工作,系统采用脉冲宽调技术,使管电流、管电压保持恒定,X射线管以最佳状态工作。并有高压慢启动功能,使X射线管阳极无高压过冲现象。主控制器采用微型贴片器件,并以20KHz频率工作,使整个系统效率大为提高,消除了噪声,为操作人员提供了安静的使用环境,同时也缩小了体积。透视仪电源采用高频高效率开关电源,并具有全面的保护措施。为确保透视仪的安全,整机加有多种保护装置,使其安全可靠。

特征编辑本段回目录

频率值高
X射线的特征是波长非常短,频率很高,其波长约为(20~0.06)×10-8厘米之间。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象。
辐射同步
X射线谱由连续谱和标识谱两部分组成 ,标识谱重叠在连续谱背景上,连续谱是由于高速电子受靶极阻挡而产生的 轫致辐射,其短波极限λ 0 由加速电压V决定:λ 0 = hc /( ev ) h为普朗克常数, e 为电子电量, c 为真空中的光速。标识谱是由一系列线状谱组成,它们是因靶元素内层电子的跃迁而产生,每种元素各有一套特定的标识谱,反映了原子壳层结构。同步辐射源可产生高强度的连续谱X射线,现已成为重要的X射线源。
穿透力强
X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。

分类编辑本段回目录

辐射分类
如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射,连续光谱的性质和靶材料无关。
一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射,特征光谱和靶材料有关。
波长分类
X射线波长略大于0.5 纳米的被称作软X射线。波长短于0.1纳米的叫做硬X射线。硬X射线与波长长的(低能量)伽马射线范围重叠,二者的区别在于辐射源,而不是波长:X射线光子产生于高能电子加速,伽马射线则来源于原子核衰变。

应用编辑本段回目录

医学领域
伦琴发现X射线后仅仅几个月时间内,它就被应用于 医学影像。1896年2月,苏格兰医生约翰·麦金泰在格拉斯哥皇家医院设立了世界上第一个放射科。
放射医学是医学的一个专门领域,它使用放射线照相术和其他技术产生诊断图像,这可能是X射线技术应用最广泛的地方。X射线的用途主要是探测骨骼的病变,但对于探测软组织的病变也相当有用。常见的例子有胸腔X射线,用来诊断肺部疾病,如肺炎、肺癌或肺气肿;而腹腔X射线则用来检测肠道梗塞,自由气体(free air,由于内脏穿孔)及自由液体(free fluid)。某些情况下,使用X射线诊断还存在争议,例如结石(对X射线几乎没有阻挡效应)或肾结石(一般可见,但并不总是可见)。
借助计算机,人们可以把不同角度的X射线影像合成成三维图像,在医学上常用的电脑断层扫描(CT扫描)就是基于这一原理。
(一)X射线诊断
X射线应用于医学诊断,主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息,在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有较大差别,因而在荧光屏上或摄影胶片上(经过显影、定影)将显示出不同密度的阴影。根据阴影浓淡的对比,结合临床表现、化验结果和病理诊断,即可判断人体某一部分是否正常。于是,X射线诊断技术便成了世界上最早应用的非刨伤性的内脏检查技术。
(二)X射线治疗
X射线应用于治疗,主要依据其生物效应,应用不同能量的X射线对人体病灶部分的细胞组织进行照射时,即可使被照射的细胞组织受到破坏或抑制,从而达到对某些疾病,特别是肿瘤的治疗目的。
(三)X射线防护
在利用X射线的同时,人们发现了导致病人脱发、皮肤烧伤、工作人员视力障碍,白血病等射线伤害的问题,为防止X射线对人体的伤害,必须采取相应的防护措施。以上构成了X射线应用于医学方面的三大环节——诊断、治疗和防护。
工业领域
X射线可激发荧光、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测。
研究领域
晶体的点阵结构对X射线可产生显著的衍射作用,X射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。

作用编辑本段回目录

●穿透作用
X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开来。
●电离作用
物质受X射线照射时,可使核外电子脱离原子轨道产生电离。利用电离电荷的多少可测定X射线的照射量,根据这个原理制成了X射线测量仪器。在电离作用下,气体能够导电;某些物质可以发生化学反应;在有机体内可以诱发各种生物效应。
●荧光作用
X射线波长很短不可见,但它照射到某些化合物如磷、铂氰化钡、硫化锌镉、钨酸钙等时,可使物质发生荧光(可见光或紫外线),荧光的强弱与X射线量成正比。这种作用是X射线应用于透视的基础,利用这种荧光作用可制成荧光屏,用作透视时观察X射线通过人体组织的影像,也可制成增感屏,用作摄影时增强胶片的感光量。
●其它作用
热作用——物质所吸收的X射线能大部分被转变成热能,使物体温度升高;干涉、衍射、反射、折射作用——这些作用在X射线显微镜、波长测定和物质结构分析中都得到应用。[3]
化学效应
●感光作用
X射线同可见光一样能使胶片感光。胶片感光的强弱与X射线量成正比,当X射线通过人体时,因人体各组织的密度不同,对X射线量的吸收不同,胶片上所获得的感光度不同,从而获得X射线的影像。
●着色作用
X射线长期照射某些物质如铂氰化钡、铅玻璃、水晶等,可使其结晶体脱水而改变颜色。

附件列表


→如果您认为本词条还有待完善,请 编辑词条

上一篇超声波

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

收藏到:  

词条信息

amg
amg
圣贤
词条创建者 发短消息   
  • 浏览次数: 594 次
  • 编辑次数: 1次 历史版本
  • 更新时间: 2013-05-14

相关词条